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Preface

The purpose of this study was to investigate the nonlinear behavior of a

simple po-..red l.'.ting hypersonic vehicle flying in a near circular orbit

above a spherical nonrotating Earth with gradients in atmospheric density

and pressure and an inverse square law for gravity. The vehicle is

constrained to fly in a vertical plane so only longitudinal motion is

modeled. Bifurcation analysis, utilizing the AUTO software package, was

used to conduct this study. A simple five-state model with three

different thrust laws was used to describe an unaugmented vehicle whose

geometric and aerodynamic characteristics follow those of the literature.

A parameter represented a body flap deflection (bf) was used to conduct

one set of bifurcation sweeps for each thrust law. Then a second set of

bifurcation sweeps for each thrust law was obtained using a parameter

representing a throttle (6T) which scaled the value of the thrust.

Secondary parameters representing simple feedback gains, were subsequently

added.

I wish to extend my sincerest thanks to my thesis advisor, Capt Jim

Planeaux, for his patient and caring nature. His guidance and insight

were invaluable. I would also like to thank the members of my thesis

committee, Dr. Brad Liebst and Major Curtis Mracek for their comments

while reviewing this document. Finally, but most importantly, I would like

to t...nk my dearest friend and love, Cynthia, for always being there for

me and shouldering the responsibilities of our family during my time at

AFIT.

Eric E. Fox
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Notation

angle of attack (radians)

:f
6bf : body flap deflection (degrees)if bfc :commanded body flap deflection (degrees)

5T : throttle parameter

A : perturbation quantity

y : flight path angle (radians)

I : parameter for example problem (=F/mg)

p1 : longitude (radians), also eigenvalue

e : pitch angle (radians)

p : density (slug/cu ft)

Obi : angular velocity of body frame to inertial frame (radians/sec)

6) : angular velocity of Earth (radians/sec)

0Vi : angular velocity of vehicle carried frame to

inertial frame (radians/sec)

J) : angular velocity of wind frame to inertial frame (radians/sec)

An : area of exhaust nozzle (ft2)

a : acceleration (ft - sec 2)

CD : drag coefficient

CDO : basic drag coefficient

CDa : partial derivative of drag w.r.t. angle of attack (1/radian)

CL : lift coefficient

CLO : lift coefficient at zero angle of attack

CLa : partial derivative of lift w.r.t. angle of attack (1/radian)

C1 : pitching moment coefficient

CIO : basic pitching moment

ix



SC~bf :partial derivative of pitching moment w.r.t.
body flap deflection (1/deg)

Cie :partial derivative of pitching moment w.r.t.
angle of attack (1/radian)

C1q partial derivative of pitching moment w.r.t.
pitch rate (sec/radian)

D drag (ib)

F : force generated by constant torque (F=T/r) in example problem (lb)

g(r) : gravity as a function of radius from Earth's center (ft - sec 2)

h : altitude (ft)

k0  : (IX - I)/IY

k Y : radius of gyration in pitch (ft)

K : pitch rate feedback gain

1 : characteristic Length (vehicle length) (ft)

L : lift (Ib)

m : mass (slugs)

M : sum of moments about vehicles center of mass (ft - lb)

M : Mach number

Pa : ambient pressure (psf)

Pe : nozzle exit pressure (psf)

q : pitch rate of vehicle relative to Earth (radian/sec)

q0  : pitch rate relative to the Earth at starting altitude (radian/sec)

r : geocentric radius (ft), also length of rod in example problem (ft)

s : area of lifting surface (ft2)

T : thrust (lb), Period (seconds), torque (ft-lb)

V : velocity (ft/sec)

Vexh : rocket nozzle exhaust velocity (ft/sec)

: weight (lb)

x



Xr : partial derivative of the longitudinal force w.r.t. radius

AXU  : partial derivative of the longitudinal forces w.r.t. velocity
in the Ox direction

( : equilibrium value; also value for example problem (i.e. Oe)

()0 : values at initial starting equilibrium solution

(0) : derivative with respect to time

(IX, I, IZ) : moments of inertial about body axes (slug - ft2)

(,fIE : unit vectors for the inertial frame

(b4,6yb9j : unit vectors for the body fixed frame

(f,,,V z V) : unit vectors for the vehicle carried frame

(Ox, 9y, ) : unit vectors for the wind axis frame

xi
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Abstract

Bifurcation analysis was used to investigate the nonlinear behavior

of a simple powered lifting hypersonic vehicle in circular orbit about a

spherical nonrotating Earth with gradients in atmospheric density and

pressure and an inverse square law for gravity. Vehicle motion is

constrained to a vertical plane so only longitudinal dynamics were

modeled. Bifurcation analysis was conducted using the AUTO software

package. A simple five-state model with three different thrust laws was

derived to describe an unaugmented vehicle whose geometric and aerodynamic

characteristics follow those of the literature. A parameter representing

a body flap deflection (5bf) was used to conduct oite set of bifurcation

sweeps for each thrust law. A second set of bifurcation sweeps for each

thrust law was obtained using a parameter representing a throttle (6T)

which scaled the thrust. Secondary parameters representing simple

feedback gains were subsequently added. Results were surprising for a

simple system with basically linear aerodynamics. Peziodic branches

arising from the loss of pitch stability or associated with a "resonance

altitude" are routinely found with significant amplitude, and periods on

the order of an elliptical orbit's period for a given geocentric radius.

Rotational states generally had sub-oscillations of greater frequency.

xii



BIFURCATION ANALYSIS OF THE LONGITUDINAL DYNAMICS
OF A SIMPLE POWERED LIFTING HYPERSONIC VEHICLE

I. Introduction

Introductory Discussion

In the past interest in hypersonic vehicle dynamics has concentrated

on assuring stable reentry and return to a few specific points on the

earth. The need for maneuverability was limited. The renewed interest in

lifting hypersonic vehicle dynamics and design; brought about by the

Trans-Atmospheric Vehicle projects, Boost Glide Vehicles, the National

Aerospace Plane and other hypersonic lifting vehicles designed for

improved maneuverability and greater versatility; has generated a need to

better understand and anticipate their possible nonlinear dynamic effects.

Specifically, the ability to predict nonlinear dynamic responses, periodic

equilibrium states and other dynamic phenomena for a representative

hypersonic vehicle is growing in importance. Previous work by Etkin (4),

Berry (2), Vihn (15) and others demonstrate some interesting behavior of

the longitudinal dynamics for hypersonic vehicles due to the variation of

atmospheric density, gravity and Mach number with altitude. Bifurcation

and continuation analyses have been used successfully to examine the

nonlinear behavior of fighter aircraft in a variety of configurations. It

was felt this type of analysis would yield insight into the nonlinear

behavior of a hypersonic vehicle as well.



The purpose of this thesis was to explore the nonlinear dynamic

responses of a hypersonic vehicle and using a more global technique to

investigate these effects. In addition, it is hoped the application of

bifurcation analysis techniques to the highly nonlinear hypersonic regime

would help extend the basic techniques available for further analysis of

hypersonic vehicles.

Summary of Previous Studies

Several papers have been presented over the last four decades that

impact directly on the study of the longitudinal dynamics of a hypersonic

vehicle flying in an atmosphere that contains gradients in density and the

effects of curvature of the flight path. Most of these previous works

built in some way upon the work presented in 1950 by Neumark (9), which

was then extended to a lifting vehicle in orbital flight by Etkin (4) in

1961. The results of these later works have served to enhance the

material originally found in these two landmark papers for lifting

vehicles. Having said this one should note that some correction of

Etkin's observations regarding the behavior of the phugoid and pitching

mode characteristics are found in the work by Vihn and Dobrzelecki (15)

and verified in a later paper by Markopoulos, et al (7) as well as this

author's most recent work.

In his paper Neumark details the motivation for his work which was

based on several of the very first studies of the behavior of airplanes in

steep angled dives. He is one of the original writers on the subject of

the effect of density gradients on airplanes having published his first

work on the subject in 1931; the earliest being in 1929. His paper

2



II

published in 1950 was the first published work in which the longitudinal

jequations of motion were cast in the form of a quintic; having added an

equation to describe the change in altitude with time. This form of the

longitudinal equations gives rise to a fifth, real root (eigenvalue) which

gives an indication of the vehicles ability to hold a fixed equilibrium

altitude. The results of his study demonstrate the increasing affect the

density gradient has on the longitudinal dynamics as the speed of the

vehicle approaches Mach one. Neumark found that the principal effect of

the density gradient is on the phugoid mode; he states that the short

period (pitching) mode is unaffected. Increasing density, increases the

phugoid frequency thus shortening the period. The effect on phugoid

damping was not clear having been complicated by compressibility effects

at speeds above M = 1.4 . He concluded the height mode would have a very

long time constant and may be either a subsidence or divergence and has

importance only for hypersonic flight or flight at constant altitude for

long periods of time (9:325).

Etkin's classic of 1961 extends Neumark's work to the truly

hypersonic case and includes, necessarily, the mathematical modifications

to account for the curvature of the undisturbed flight path and the

variation of gravity with altitude. In his analysis the longitudinal

equations of motion for flight in a vertical plane about a nonrotating

Earth whose atmosphere is at rest are linearized and the behavior of the

vehicle subject to small disturbances about an equilibrium is examined.

In addition, he presents results from numerical solutions to the nonlinear

equations and does a comparison with the linear approximation. Of note in

the equations of motion is the addition of the torque about the vehicle's

center of mass due to the small variation of gravity acting on a body at

3



very high altitudes (above 500,000 ft) where the pitch damping is

negligible. In this realm the gravity torque generates the dominant

moment acting on the vehicle and for a standard vehicle configuration

whose longitudinal axis is nearly aligned with the flight path this effect

is destabilizing.

Etkin examines four basic cases using the same (steady reference)

lift coefficient (Ch = 0.05 [rad'1]).

Case A Constant thrust rocket, full set of equations
Case B Air-breathing engine (T c p), full set of equations
Case C Approximate equations (i.e. no density gradient)
Case D Constant thrust rocket with q0 = 0

where q0 is the equilibrium value of the pitch rate relative to the Earth.

Etkin determined that the effects of varying density and gravity

with altitude and the effects due to the Earth's curvature and the thrust

law have significant impact on the phugoid mode and the stability of the

height mode, but insignificant effect on the pitching (short period) mode

except at very high altitude where the pitch damping is overcome by the

gravity torque. In addition, Etkin found that above 400,000 ft the period

of the pitching and phugoid modes approached each other and he asserts

that they become equal, after which the phugoid tends toward the orbital

period and the pitching mode tend toward infinity. In this altitude range

he demonstrated a dynamic coupling between the two modes and when nearly

equal all relation to two classical modes breaks down with substantial

pitching motion in the phugoid mode. Finally when the two modes are

exactly equal he determines the system to be unstable. For the height

mode Etkin found that it represents "a spiral, proceeding away from the

reference orbit." He also noted an interesting variation in the way the

speed changes with altitude above and below 350,000 ft. Above this

4



altitude as the altitude is decreased the speed increases whereas below

this altitude the opposite is the case (4:787-788).

In the work by Vihn and Dobrzelecki (15) an "analytic study of the

longitudinal dynamics of a thrusting, lifting orbital vehicle in a nearly

circular orbit" is conducted. The basic set of five equations used to

describe the longitudinal motion of a vehicle in orbit about a spherical

Earth were used. A strictly linear analysis as well as analysis including

second order terms in the Taylor series expansion of the atmospheric

density were used to develop explicit relationships to describe the

orbital motion. Also developed were analytic expressions for the period

and damping of the "angle of attack" (pitching) mode. As with Etkin they

observed an altitude where the velocity-altitude relationship inverts.

They went on to develop an expression based on vehicle characteristics

that defines the altitude where this "inversion" takes place. Finally

they found the trend at high altitude of the linearized phugoid or long-

period mode and angle of attack (pitching) mode tend to become nearly

equal in frequency, period and damping, then diverge. (Figure 1) Similar

behavior for the very same equations was found earlier by Ztkin (4:785-

788) where he concluded the two modes "crossover" and the phugoid period

tended to the orbital period while the period of the pitching (short

period) mode tended toward infinity. At the point of "crossing" Etkin

concluded the dynamic system would be unstable (4:787).

Stengel also found the same basic trends in the three longitudinal

modes however his work looked more closely at the stability questions and

dealt at some length with various techniques to provide altitude stability

for a vehicle in supersonic cruising flight (13). In his work he uses the

linearized equations for longitudinal motion, characterized by the

5
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Figure 1. Frequencies near Resonance
Altitude (15:19)

perturbation variables Au (forward velocity), Aa (angle of attack), Ae

(pitch attitude), and Ah (altitude), to study the interrelations of

motions these variable characterize. He then used this information to

test how various combinations of feedback and control would affect

altitude stability. In addition to developing analytical transfer

functions he conducted numerical studies and summarizes the effectiveness

of the various techniques proposed. Some of his results were tabulated in

his work and are reproduced on the following page in Table I.

In a later work by Berry (2), he examined the effect on the "long-

period dynamics" of a vehicle of similar characteristics to previous

authors but included an "advanced air-breather" with a more complicated

thrust law which is more representative of a true hypersonic vehicle like

the National Aerospace Plane. He concluded that the height mode stability

and long-period damping were strongly affected by the slope of thrust with

6



Mach number (6:255-257). While all the trends indicated in his work are

valid they are not in the strictest sense complete. It is the variation

of the difference between thrust and drag with height and Mach number that

determines stability. These more complete relations are identified in

works by Markopoulos, et al (7:285) and Stengel (13:468,472). Berry

further examined the effectiveness of various simple feedback schemes

involving only the pitch control surface to stabilize the long-period

and/or height modes. Some results for feeding back combinations of pitch

attitude, forward velocity and altitude to the pitch control surface for

the rocket and "advanced air-breather" were presented (2:256-257).

Most recent is the work by Markopoulos, Mease and Vihn (7) where the

linearized equations of motion are used to examire the thrust law effects

on the longitudinal dynamics of an aerospace vehicle flying at hypersonic

speeds. Their work demonstrates the dependence of the height mode

stability and phugoid damping on the way the longitudinal force varies

with both altitude and speed. In addition they confirm the results of the

previous study by Vihn and Dobrzelecki (15) for the high altitude trend of

the phugoid or long-period mode and angle of attack (pitching) mode.

Of special interest in the work by Markopoulos, et al, is the

characterization of expected height mode stability and phugoid damping

over the plane of all thrust possibilities. The plane is defined by two

parameters, specifically the variation in the longitudinal force with

height (X) and velocity (X). The correlation of the points relating to

earlier work by Etkin (4) are in excellent agreement. They went on to

conclude that it is actually "the partial derivatives of the difference

between thrust and drag with respect to speed and altitude that plays the

key role in determining the stability of the translational dynamics (7:287)."

7



TABLE 1

SOME FEEDBACK EFFECTS FOR STENGEL'S STANDARD CASE WITH AUGMENTED SHORT
PERIOD (FEEDBACK IS NEGATIVE UNLESS DENOTED BY (+))

Feedback Variable
and Control Height Mode Phugoid Mode

Attitude to:
thrust SS SI

lift (-) I S
lift (+) SS I
moment (-) S I
moment (+) SI S

Pitch angle to:
thrust N I
lift (-) I SS
lift (+) N SI
moment (-) I SSa
moment (+) N SI

Forward Velocity to:
thrust SS SS,
lift (-) SI SS
lift (+) N SI
moment SS SSa

Angle of attack to:
thrust N SS
lift (-) SI Sia

lift (+) N SS
moment (-) ? I
moment (+) SSb

S = Stability SS = Strong Stability
I = Instability SI = Strong instability
N = Neutral stability
a With Limited Travel.
b Conditional Stability Stengel (13:470)

This same relationship was discussed by Stengel in his article on

"Altitude Stability for Supersonic Cruising Flight" (13:468,472).

Markopoulos, et al, further concluded after numerical simulation of their

full and reduced order mathematical models that over the plane of all

engine possibilities

"if thrust increases faster than drag with respect to speed at
least one of the translational modes (height or phugoid) will
be unstable. Increasing the partial derivative of the differ-

8



ence between thrust and drag with respect to altitude has a
destabilizing effect on the height mode and a stabilizing
effect on the phugoid (7:287)."

Finally, they concluded that to first order, the period of the phugoid

J mode as well as all characteristics of the pitching mode are independent

of the thrust law (7:287).I
Outline of Analysis

In this thesis the dynamic behavior of a powered lifting hypersonic

vehicle in nearly circular orbital flight about the center of mass of a

spherical nonrotating planet (specifically the Earth) whose atmosphere

contains gradients in density and pressure and whose gravitational field

follows the inverse square law is examined.

Throughout this thesis emphasis is given to the leading order

aerodynamic behavior and simplifying assumptions to this end are brought

to the readers attention as required. In order to focus the scope of this

work it is assumed the flow is inviscid therefore the effects of high

temperature gas flows are neglected. This assumption is consistent with

general longitudinal analysis found routinely in the literature and allows

use of simple Newtonian impact theory as the basis for the aerodynamics.

To begin this study the reader should have a good mental image of

the problem being analyzed, and a well developed understanding of the

equations used to describe the translation and rotatinn of a body flying

a great circle about a spherical planet. To facilitate this the basic

equations for a vehicle flying in an atmosphere at rest relative to a

nonrotating spherical planet (E=0) are derived. The first step in

analyzing this problem is to identify an inertial reference frame. Then,

9



three advantageous frames of reference relative to the inertial frame are

introduced from which a set of equations describing the forces and moments

acting on the body of interest are developed. It is common in trajectory

analysis to use a wind axis system as shown in Figure 2 where the positive

x-axis is parallel to, but opposite, the relative wind. In this way the

aerodynamic forces are cleanly defined and the velocity vector has a

single non-zero component. For the analysis of angular momentum the body-

fixed axes are used, also shown in Figure 2 as b. and bz, thus the moments

of inertia are time invariant and for a fixed mass and mass distribution,

as is the case here, the moments of inertia are constant. The vehicle

axes indicated in Figure 2 by (v)x,, is used as a convenient intermediate

frame between the body or wind axes and the inertial axes.

As with linear analysis, the bifurcation analysis begins at a known

equilibrium point, but rather than linearizing the equations and looking

at small disturbances about this point, a continuation method is used to

solve for the flow of equilibrium solutions (specifically the pseudo-arc

length technique resident to AUTO; the software package used for

continuation and bifurcation analysis in this study) (3:12-16; 12:116).

From the path of equilibrium solutions (or stationary points) bifurcating

solutions, or in other words, additional solution paths are located and

explored. Of the various types of possible solution branches special

interest is given to branches obtained subsequent to a nonhyperbolic or

degenerate point (12:18-20). These often give rise to branches of

periodic solutions where motion, such as periodic oscillations develop.

On these branches the dynamic behavior comes to life. Many of these

concepts are clarified in section II where the nature of bifurcation

analysis is discussed.

10
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Equations of Motion

The author is indebted to Planeaux (10), McRuer, et al (8:204,220)

and Etkin (5:104,148) for background and guidance for the following

development. The reader is encouraged to review the two texts for details

on the development of the following system of equations. To begin, the

basic assumptions on which the equations of motion are based must be

stated:

1. The Earth is an inertial reference frame.

2. The vehicle is a rigid body.

3. The vehicle mass and mass distribution are constant.

4. The vehicle is symmetric about the x-z plane.

5. The body fixed axes are aligned with the principal axis of the
vehicle.

In addition to the simplifications resulting from the assumptions

above, the terms associated with motion in the horizontal plane are

neglected leaving the system as shown above in Figure 2.

Looking first at the angular and kinematic relations, by inspection the

following angular rate of the three reference frames relative to the

inertial frame are given as:

q= =f (-.A +O (6 + Ey)6 (1)

~Vi = -1 f (2)

12



~~~ O - )f - Y (3)I

where: (2.,7,= unit vectors of inertial frame= unit vectors of body frame
(;x, yOz) = unit vectors of wind frame

= time rate change of longitude (rad/sec)
= time rate change of flight path angle

(rad/sec)
= time rate change of pitch angle (rad/sec)

&jbi = angular velocity of body to inertial frame
(rad/sec)

Vi = angular velocity of vehicle to inertial

frame (rad/sec)
hwi = angular velocity of wind to inertial frame

(rad/sec)
q= pitch rate ot the vehicle relative to the

Earth (rad/sec)

The radius (r) is the distance from the center of mass of the Earth to the

vehicles center of mass and written as a vector in the vehicle frame is

given as:

S-(4)

where: -Ox, y,) = unit vectors of the vehicle frame
r = geocentric radius (ft)

From eqn(4) the velocity can be written by differentiating in the vehicle

frame:

V = Si +QVjxx
= - z + r(s

where: y = flight path angle (rad)
V = velocity (ft/sec)

13
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However the velocity can also be shovn to be:

V= V(cos (y) V, - sin (y) 0,) (6)

By combining eqn(5) and eqn(6) the following scalar kinematic relations

are obtained:

f = Vsin(y) (7)

-cos (Y) (8)

where: y = flight path angle (rad)
r = radius (ft)
V = velocity (ft/sec)

From eqn(1) the equation for the time rate change of pitch angle can be

obtained by solving for 6 as follows:

6 = q + (9)

Following directly from the assumptions 3 through 5 the time rate change

of the pitch velocity of the vehicle is given as (4:145):

_= M (10)

where: I = moment of inertia about the y-axis of the body (slug-ft2)

M = sum of moments about the vehicle% center of mass (ft-lb)

Equations (7,9 and 10) make up three of the five equations of

motion. The remaining two equations fall out of the force balance which

is dealt with next.

14A



Summing forces acting at the vehicles center of mass yields:

F ma= mg(r) f, 2  -
= [-mg(r) sin(y) + Tcos(a) - D](11)

+ [mgcos(y) - Tsin(a) - L] Z

where: a = acceleration (ft-sec"2)
D = drag (lb)
g(r) = gravity as a function of geocentric radius (ft-sec 2)
L = lift (lb)
m = mass (slug)
r = geocentric radius (ft)
T = thrust (lb)

Now velocity in the wind frame is written as V=VO,,. The acceleration

in the wind frame is given by:

0 a = - (j-1 I VO, (12)

Since F=ma eqn(12) and eqn(11) can be set equal, after multiplying

eqn(12) by the mass m, and upon separating into scalar components yields

the following two equations.

mV = Tcos(cc) - D - mgsin(y) (13)

-m - 4)V= -Tsin(a) - L + mgcos(y) (14)

Utilizing the relation = y + a and eqn(9) the following expression is

obtained:

q-= t-A (15)

15



Substituting eqn(15) into the left hand side of eqn(14) and solving for&

yields the final equation for the set of five equations of motion.

& = q - T sin(a) - L + g(r) cos(y) (16)
mV mV r

Equations (7,9,10,13 and 16) comprise the set of five dynamic and

kinematic equations for this analysis. Together with the following

expressions for the aerodynamic forces and moments, and the thrust

equations they comprise the complete set of equations required to conduct

this study. The five equations of motion are reprinted below for

convenience:

mV = Tcos(a) - D - mgsin(y) (13)

-q Tsin(a) - g(r)cos(y) (16)
mV mV z

= q + (9)

A (10)

i = Vsin(y) (7)

Aerodynamic Forces and Moment Coefficients. As with linear analysis

the standard forms of the forces and the moment due to aerodynamics will

be used, and are listed below. Notice however, the term on the right hand

side of eqn(19). This term is the moment about the center of mass of a

satellite in a gravitational field and as found by Etkin is a significant

16



factor at high altitudes (4:783; 11:21).

D = -2 pV2SCD (17)

2

L = -2 -pV2SCL (18)
2

M p3V2SC. - -g.- (x.- .I) sin (2e) (19)

2 2 r

CD = cD * co a2  (20)

cL cLo + C a (21)

Cm = C. + C. a + Cq (q - 4) + C.8bt bf (22)

where: p = atmospheric density (slug/ft3)
CD = nondimensional drag coefficient
CDO = basic drag coefficient
CDa = partial derivative of CD w.r.t. alpha (1/rad)
CL = nondimensional lift coefficient
CbO = basic lift coefficient
CLa = partial derivative of CL w.r.t. alpha (1/rad)
C1  = nondimensional aerodynamic moment coefficient
C~q = partial derivative of C, w.r.t. pitch rate (sec/rad)
CAO = partial derivative of C. w.r.t. alpha (1/rad)
Ci6bf = partial derivative of C, w.r.t. body flap deflection

(I/deg) 
2g(r) = gravitational acceleration (ft/sec2)

1 = characteristic length (vehiyle length) (ft)
S = area of lifting surface (ft')

The final term in eqn(22) represent the contribution of the body flap

deflection to the moment coefficient and is used as a standard pitch

control surface. The density is calculated using one of two analytic

expressions depending on the altitude. The specifics of how the density

is calculated as well as a brief discussion of the development of the

analytic expressions is found in Appendix 2.
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Thrust Laws. Three basic ideal thrust laws are used in this study.

The equations representing these thrust laws are detailed below.

constant thrust rocket

T = -!pV.oSC (23)

where: p0  = atmospheric density at starting altitude (slug/ft3)
V0  = velocity at starting altitude (ft/sec)
CDO = drag coefficient at starting altitude

Notice for the constant thrust case the thrust is fixed at the values of

the drag for the starting altitude (i.e. the altitude where the

bifurcation sweeps starts). This is required since to start the

continuation method an equilibrium solution must be provided as a first

step. In all cases the equilibrium solution has a = 0 = 0 radians. This

requires the thrust to equal the drag for equilibrium.

variable thrust rocket (61356)

T = rhVxb + (Pe - Pa) An (24)

As stated above the starting equilibrium point with a = 0 = 0 radians

requires the thrust to equal drag when the continuation method is begun.

This requires that the mass flow be determined by setting the thrust equal

to the drag at the starting altitude, therefore the mass flow rate of the

exhaust is fixed at the following equation. Note it is assumed the mass

flow is sufficiently small relative to the mass of the vehicle as to be

negligible. This assumption is fairly good at high altitude but is very

18



poor at altitudes below about 200,000 ft.

A= 2 0  (P- P.) A (25)

where: A = exhaust nozzle area (ft21
= mass flow rate of exhaust (slug/sec)

Pe = pressure at exhaust nozzle exit plane (psf)
Pa = ambient air pressure (psf)
Vexh = velocity of exhausted mass (ft/sec)

ideal turbojet (9:332)

T = To PO (26)
I. P Y

As with the constant thrust rocket, thrust for the ideal turbojet must

equal drag at the starting altitude since the continuation method requires

an initial "starting" equilibrium solution and a = 8 = 0 was taken as

the values of these states at the equilibrium point. Therefore the value

of To is set by the following relation:

= poV2SC (27)

Note the exponent "x" can be used to change the way the thrust varies with

altitude. For the standard turbojet, x equals one (x=l).

It should be noted that in all cases the thrust can be varied with

in the subroutine CONST through a Thrust Scaling Parameter (OT) that

multiplies the calculated value of thrust using the above relations.
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This parameter thereby acts as a throttle, increasing or decreasing the

thrust as required for the 6T bifurcation sweeps.

Vehicle Characteristics. As with the majority of previous studies

conducted on this subject, the vehicle geometry and aerodynamic

characteristics used here will be basically the same as those used by

Etkin (4:783-784). This allows nearly direct comparison of results which

is helpful to check consistency of linearization at starting points and

more importantly will be used to highlight the advantages and simplicity

of using bifurcation analysis for even the simplest problems in

atmospheric flight mechanics/dynamics. Etkin obtained his data from

"simple Newtonian impact theory for a slender body (cone or wedge of

about 30 semiangle) at moderate angle (4:784)." In this study a small

change has been made to allow for lift at zero angle of attack, which is

more representative of a hypersonic vehicle, however as seen in Figure 3

Etkin's basic lift to drag ratio was followed fairly well.

With these clarifications stated the geometry and aerodynamic

characteristics are as follows:

Geometry

1 = 50 ft k = (I /m) 1/2 = 25 ft -(I- I)/I = -0. 94
W = 700,000 lb WyS = J0 psf (at sea level) Z Y

Aerodynamics (dimensions are (rad"1] unless otherwise indicated)

b= 0.05 C10  = 0.00
CLa =0.50 Cia = -0.0548
C 0.0133C = -0.028
CDa = 0.400 16bf = -0.0822 [e "
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Figure 3. Comparison of CL/CD with Etkin's work
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J II. Introduction to Bifurcation Analysis and Stability

Equilibrium Solutions and Equilibrium Points

At this point it is best to discuss some of the central points of

bifurcation analysis to allow the uninitiated to understand what is being

done, and to highlight what is being presented in the bifurcation diagrams

and phase plane diagrams which follow.

Continuation is the core on which the present application of

bifurcation analysis is based. There are several types of continuation

techniques, but discussing them is not appropriate here. What is required

is a general description of what is obtained. The analysis here starts at

an equilibrium point from which the continuation technique is begun. The

equilibrium point is obtained by setting the time derivatives of the state

variables to zero thus creating a set of homogeneous equations and solving

simultaneously for the values of the state variables that satisfy the

homogeneous equations. Once this starting point is obtained the

continuation method can begin. The continuation method will search in the

vicinity of this point until it finds another point which satisfies the

set of homogeneous equations. This process continues over the given range

of the specified parameter and within the bounds established for the

states, until a complete parameter-dependent family of equilibrium

solutions to the set of homogeneous equations has been found. An

important feature of the bifurcation software AUTO is the ability to find

the equilibrium solution path despite running into singular points (limit

points and bifurcation points). AUTO uses a pseudo-arclength technique
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which allows it to continue working despite encountering a singular

Jacobian of the linearized set of equations. Other less robust techniques

fail at these points where the slope of the solution with respect to the

parameter is not unique, as in the case of a bifurcation, or undefined, as

with a limit point. The reader is referred to the user's manual for AUTO

and the text by Seydel for further information on this technique (3:12-16;

12:116+).I
Simple Nonlinear Behavior:I

While knowing an equilibrium solution branch is interesting, the

true value in this analysis for those interested in nonlinear effects is

the accurate location of limit and bifurcation points. The reasons for

interest in these singular points are many. In the case of a bifurcation

this point represents the intersection of other solution branch(es).

Depending on the type of bifurcating point there is the potential for

complex motion arising from the nonlinear nature of the problem. In the

analysis of longitudinal motion of a powered lifting hypersonic vehicle

the two most prevalent singular points encountered are limit points, which

may give rise to hysteresis type behavior or an exchange of stability, and

Hopf bifurcations, which generally occur in this study when the phugoid

mode eigenvalues cross the imaginary axis transversely and either lose or

gain stability. Generally for the analysis of the longitudinal dynamics

of a powered lifting hypersonic vehicle the Hopf point signals the loss of

stability in the phugoid mode. A Hopf point is of special interest in the

study of nonlinear dynamics as the behavior subsequent to a Hopf

bifurcation is generally characterized by increasingly complex periodic
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motion known as limit cycles. For systems with three or more degrees of

freedom the Hopf bifurcation may also be the first step in the direction

of chaos (12:25).

While the mathematics of bifurcation analysis is not within the

scope of this thesis an understanding of physical processes is. To

further clarify some of the points made, and to provide a basis for

understanding what a basic bifurcation study is all about, the following

simple example is presented (10).

Figure 4 shows a mass (m) connected by a mass-less rigid rod to a

mass-less rigid sleeve which is around a spinning shaft. The friction

coefficient between the spinning rod and the sleeve is constant therefore

a constant torque is generated which is transmitted to the mass as a force

(F) via the mass-less rigid rod. In-set in Figure 4 is the free-body

diagram for the mass and the reference axes. Note the pendulum is held at

a constant angular position by the torque applied to the sleeve.

The scalar equation of motion for the mass m is:

mrV = F - mgsin (8) (28)

Where: F = force generated by the constant tofque (F=T/r) [lb]
g = gravitational acceleration (ft/sec
m = mass (slugs)
r = length of rod (ft)
T = torque applied to sleeve (ft-lb)

At a point of equilibrium the left hand side of eqn (28) is equal to zero,

that is there is no change of the state variable when the forces acting on

the mass are in equilibrium.
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Figure 4. Pendulum for Example ProblemI
IThis brings out an important point to remember when looking at bifurcation

diagrams: the stationary solution path is made up of equilibrium

solutions (equilibrium points) and no change of the state variables is

in vol ved.

For the equilibrium solutions eqn (28) is a homogeneous equation.

In the case of the powered lifting hypersonic vehicle there is a set of

homogeneous equations that are solved to locate the equilibrium solution.

I To actually conduct the bifurcation analysis a parameter must be

established for which the continuation process finds a solution path. For

the example problem, the parameter can be identified as A = F/(mg) and
2

! 2
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the homogeneous equation can then be put in the form of eqn(29) below:

e = sin' 1(-) (29)
mg

By varying A from -1 to 1, a plot of the equilibrium solutions for Oe is

easily obtained even with a hand calculator. The bifurcation analysis

however, yields inforrition on stability by linearizing the differential

equation (or set of equations) and solving for the eigenvalues of the

subsequent Jacobian thus providing the following bifurcation diagram.

In looking at the bifurcation diagram it is seen there are at least

two equilibrium solutions for each A in the open set (-1,1). The two

points corresponding to 1=-1 or 1 are called limit points. It is clear to

see that limit points have only one value of the equilibrium point for a

given parameter and are points where the equilibrium solution path turns

back with respect to the parameter; thus the slope is undefined. Note

also that to one side of a limit point no equilibrium solutions exist yet

on the other side two equilibrium solutions exist for each A. In the

example problem the limit points also correspond to points where stability

is either lost or gained, depending on the direction of the parameter A,

however this is not always the case for limit points in general. Finally,

note the convention used in bifurcation diagrams is to identify stable

equilibrium branches with solid lines and unstable equilibrium branches

with broken or dashed lines; other graphical conventions will be brought

to the reader's attention as required.
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Figure 5. Bifurcation Diagram for Example
Problem

The bifurcation diagram now shows part of its value in that the

local, and at times global, behavior of trajectories can be predicted.

For this example problem trajectories in the vicinity (domain of

attraction) of a point on the stable equilibrium branches will oscillate

about the equilibrium point since no damping is included. If damping were

added the trajectories would be attracted to the equilibrium point. This

can be visualized in thinking of the mass at an angle Oe that corresponds

with the stable branch for a given value of 1. Given a small perturbation

in any direction the mass will return to the equilibrium point, that is it

will be attracted to the stable branch. Trajectories in the vicinity

(domain of repulsion) of a point on one of the unstable solution branches

will be repelled. Again think of the pendulum mass at an angle Oe that

corresponds to a point on one of the unstable branches. Given a small
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perturbation the mass will not return to its original position or

trajectory but-will move away and in the example problem will swing around

the shaft. Note finally, that the domain of attraction can be limited.

1 , In the example problem, even if the mass is in a stable position in the

lower part of the pendulums arc, if given sufficient perturbation in the

direction of the force F the mass can be made to swing around the shaft

and in the absence of any damping action will not settle back to a stable

position; i.e. the domain of attraction is limited. Finally, note for

values of A 1 and A < -1 the pendulum will swing continuously about the

shaft - - no equilibrium exists.

The foregoing example has provided a good picture of the very basics

of bifurcations analysis and some of the phenomena that may occur when

analyzing nonlinear problems. In addition it has provided some physical

significance to limit points. It was however limited in its ability to

fully demonstrate possible behavior as it has only one degree of freedom.

Problems with three or more degrees of freedom can develop many other

phenomena and a variety of ways to exchange stability.

Limit ,ycles (Orbits)

Hopf bifurcations, which are a central feature in the study at hand,

give rise to periodic solution branches which on a bifurcation diagram are

shown by plotting the maximum and/or minimum values of limit cycles

(Figure 6). These surfaces projected in the phase plane, or phase space

for systems with degrees of freedom greater than two, are called limit

cycles or orbits and represent a surface of periodic solutions surrounding

a equilibrium solution branch (Figure 7).
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Figure 6. Limit of Periodic Motion about a
Solution Branch

' 2

Figure 7. Limit Cycle or Orbit in Phase Space
(12:63)
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Just as with equilibrium solution branches, periodic solution

branches can be stable or unstable and will either attract or repel

trajectories within their domain of influence (12:12-25). Local stability

of the periodic solutions is based on Floquet theory involving the

monodromy matrix (12:240-248). For the purpose of this study one need

only know the relationship of the eigenvalues of the monodromy matrix with

the criteria for local stability of the periodic solution branch. The

monodromy matrix always has one eigenvalue (Floquet multiplier) in the

complex plane at z=1. This is subsequently used as a test for accuracy in

calculating the other multipliers in AUTO. Through establishing a

relationship between the remaining Floquet multipliers and a Poincar6 map

or return map it is determined that if the modulus of the remaining

Floquet multipliers are each less than unity then the periodic solution is

stable (i.e. attracting). AUTO computes the Floquet multipliers and uses

this to determine stability. As mentioned above the accuracy of this

calculation must be checked based on the one Floquet multiplier at z=1.

Since five ordinary differential equations make up the full set of

equations needed to model the longitudinal dynamics for this study then

for the periodic branches to be stable four Floquet multipliers must each

have a modulus less than unity and one must have a modulus equal to unity.

Further discussion of nonlinear behavior is beyond that required to begin

the analysis, these concepts will be expanded on as the results of the

study are examined.
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Two Parameter Continuation:

Upon locating a Hopf bifurcation point or limit point AUTO can be

used to perform a two parameter continuation which will show the evolution

of bifurcation points as the second parameter is varied; ordinary

equilibria is ignored. For the study here the two parameter continuation

will be used to determine the value of a gain in a feedback loop to

attempt to stabilize a system. Specifically by plotting one parameter

against another a curve of limit points or Hopf points is generated. If

for instance, the first parameter is the body flap deflection or a pitch

command and the second parameter is the pitch rate feedback gain in a

pitch attitude feedback loop, the plot of the two parameters would show

how the Hopf point (the point of stability exchange) moves with the pitch

rate gain. A typical plot might look something like Figure 8.

In this figure one can see that for values of pitch rate gain the Hopf

point will move along the curve. If one wishes to delay the occurrence of

the Hopf point relative to the magnitude of the body flap deflection

F (thereby delaying the exchange of stability) one would raise or lower the

gain as appropriate until the Hopf point is moved far enough to meet the

system requirements based on the body flap deflection. Some simple

Jfeedback techniques are examined further in Section IV.

3
I
I
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III. Bifurcation Analysis of Longitudinal Dynamics

To begin the actual analysis the set of ordinary differential equations

given by eqns(7,9,10,13 and 16) must be solved for an equilibrium point.

As stated before this equilibrium starting solution is required for the

continuation method to begin. Taking the equations of motion and

substituting the force and moment coefficients yields:I

_ -Cos_(a) pV 2 SCD gsin(() (30)

m 2m

6: - --L sin (a) PVr + g- Cos (Y) (31)pSVCL g(r) (1
mV 2m

q + -Ycos (y) (32)
rI

= 2.Z, 3 S Ix, -I) sin (20) (33)

f = Vsin (Y) (7)

where the force and moment coefficients are as defined before in eqns (20,

[21 and 22) and are again repeated below for convenience.

CD c , + CcD 2 (20)

CL = CLO + (21)
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CCso + Cm + Czq(q-) + Cnab8bf (22)

The equilibrium values are obtained by first setting the left hand side of

equations (7, 30, 31, 32 and 33) to zero and solving for the states (V, a,

q, 0, and r). To make things easy y is set to zero (y = 0), which means

a = 0 = 0 . From this point the following equations are obtained that

describe the requirements for equilibrium with r r0, a = 0 = 0:

Yo = 0.0 (34)

o 1 (PorocjC (35)

q0 - Vo (36)
I o

T(r o ) = -p(rO) SCDVo (37)

Cm = 0.0 (38)

This set of equations is programmed into the user provided subroutine FUNC

which AUTO requires to find the flow of equilibrium solutions as a

specified parameter is varied. Note the body flap parameter (6bf) shows

up in the last term of eqn(22). Also of interest is the value of the

thrust at the starting equilibrium point - - it equals the drag as was

discussed earlier for the thrust laws. The AUTO software package was used

to develop the equilibrium solution branches and identify bifurcation
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points for the system described by eqns(7, 30, 31, 32 and 33). The

parameters used to conduct the analysis were a body flap parameter (6bf)

and a parameter which scaled the thrust (MT); simulating a throttle. This

study was conducted for several starting equilibrium altitudes, which

amounts to selecting a starting altitude (r = r0), and setting the angle

of attack and pitch angle to zero and letting AUTO solve for the velocity,

pitch rate and thrust. The starting altitudes ranged from 50,000 ft to

700,000 ft. Again note that for each starting equilibrium altitude a

different value of the initial equilibrium thrust is obtained since, as

discussed before, thrust must equal drag at the starting equilibrium

point. Note that the thrust decreases with increasing altitude. The

resulting bifurcation diagrams are identified by their starting altitude

as the thrust level, which is fixed by the drag at the starting altitude,

makes a difference in the behavior of the system.

One can see the equations of motion are clearly nonlinear with the

states all interrelated, However two states exert the primary influence

by virtue of the type of problem being analyzed, these are the velocity

and the radius. It is the way these two states vary to achieve

equilibrium and the fact that the behavior being observed is the behavior

of the equilibrium solution path that makes for results that are not

intuitively obvious relative to the effects of changing the body flap or

throttle (or more precisely thrust variations). This point must be

emphasized since most traditional dynamists are used to dealing with the

time history of trajectories or frequency response given some control

input. As discussed in section II the bifurcation diagrams which are used

here are not time histories but a collection of equilibrium points that

provide the value of the states relative to a parameter.
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The fact that the solution branch is made up of equilibrium points implies

that no change of the state variables occurs at the individual points

along the curve; this can at times cause confusion so beware.

Three cases were initially considered based on the three separate

thrust laws discussed in previous sections. The results of the rocket

whose thrust varied with altitude differed little from the more standard

constant thrust rocket used by most previous authors working on this topic

so the case was dropped. The remaining two cases were studied to

investigate the behavior the rather simple nonlinear model would generate.

What follows is a discussion of the results. Since the effect of the body

flap and throttle are significantly different it is best to discuss them

separately.

Body Flap Parameter (6bf) Variation

The body flap parameter mathematically represents a deflection of

the body flap in degrees. This value is changed to radians and affects

the value of CH via eqn(22). A change in the value of C, generally causes

a change in the vehicles angle of attack and pitch attitude. It is

interesting to note that the primary influence of the body flap on the

behavior of the equilibrium solution path is, that in changing the angle

of attack the value of the lift coefficient is changed which is a key

parameter in establishing the value of the velocity for a equilibrium

orbit (16:321-344). Therefore it is best to think of the body flap as a

control by which lift is modulated.

To understand the equilibrium solutions obtained relative to the

body flap parameter one must examine the relationship of the velocity and
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radius with C. The following equation relates the velocity to CL and

radius and is central in understanding what is occurring when looking at

a equilibrium solution path displayed in a bifurcation diagram.

J r(g Tsin( 0)
V W  m (39)

1 + pSCmr
2m

This equation results from the homogenous set of equations for equilibrium

and represents the velocity - altitude relationship for everything from an

unpowered satellite or lifting vehicle in equilibrium orbit to the case

here of a powered lifting vehicle in equilibrium orbit. The velocity

plays a key role in providing forces sufficient to balance the weight of

the vehicle. At high altitudes the centrifugal force is the primary

means by which the vehicle balances the weight, where at lower altitudes

the lift, which is a function of velocity is the primary balance to the

weight. The way in which the equilibrium solution path moves in order to

balance all forces is quite interesting and as stated before not always

obvious. Those interested in knowing more about how velocity, altitude

and the lift coefficient are related in orbital flight are refered to

reference (16).

The investigation was conducted by performing a continuation from

the equilibrium starting point (i.e. r=r0) using the body flap parameter

to control the initial direction of the continuation. A body flap sweep

is defined as the summation of the equilibrium branches obtained from

performing the continuation in the directions associated with a positive

flap deflection and a negative flap deflection (control surface movement

37

I



I

downward being positive). The flap was constrained to +/- 90 degrees by

fixing the limiting values for the parameter in AUTO. Starting altitudes

for the constant thrust rocket case were varied between 100,000 ft and

700,000 ft and for the air-breathing engine case ranged from 50,000 ft to

400,000 ft. Note in all cases as the starting altitude is increased the

starting equilibrium value of the thrust is decreased. The equilibrium

solution paths were tabulated, stability determined and all simple

bifurcations, limit points and Hopf bifurcation points were located.

Having mapped out the equilibrium solution and identified the various

singular or bifurcation points any Hopf bifurcations were continued to

obtain the limit cycles. This process is accomplished by taking the

equilibrium conditions at the point identified as a Hopf bifurcation as a

starting point for AUTO's continuation method. Specific software routines

in AUTO are used to perform the required functions to obtain the periodic

solution branch. These data are generally interpreted graphically to

obtain a general feel for the local behavior of trajectories in the

vicinity of the solution branches; these graphs are known as bifurcation

diagrams. Since bifurcation diagrams are meant to convey information

about the behavior of the system, it seems only natural that a method or

convention be established for presenting data on these. The reader is

encouraged to take note of the following rules for conveying information

about the types of solution branches and their local stability

characteristics.

Equilibrium solution branches are presented as lines. Solid lines

indicate stable solution branches and any type of broken or dashed

lines indicate an unstable equilibrium solution branch.

Periodic solution branches are shown as circles or dots which
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generally indicate the maximum amplitude of the periodic motion.

Stable periodic solution branches are shown as solid dots or filled

circles. Unstable periodic solution branches are indicated by open

circles.

These conventions are adhered to throughout this paper.

Constant Thrust Rocket Case. The following bifurcation diagrams

were generated using AUTO as described previously, however further

explanation of the way the constant thrust value is determined. As stated

several times before, and shown explicitly in eqn(37), the thrust equals

the drag at the starting equilibrium solution with y = 0 radians. For

the constant thrust rocket case this value obviously is fixed over the

entire body flap sweep. This means that two equilibrium solution points

with the same altitude but obtained from body flap sweeps starting at two

different altitudes will not have the same value of thrust and in general

will have different values for the other states as well. Note finally, as

starting altitudes are increased the value of the thrust decreases.

Figures 9 and 10 show a collection of bifurcation diagrams for each

state (note a = e ) for the body flap (6,) sweeps from 100,000 and 300,000

ft respectively. While the behavior is nonlinear there is not a great

deal of interest occurring over most of the equilibrium branches.

Figure 9 is characteristic of the constant thrust rocket case with 6bf as

the parameter for starting altitudes less than 150,000 ft and Figure 10 is

characteristic of the constant thrust rocket case with 6bf as the parameter

for starting altitudes between 150,000 ft and about 360,000 ft. One of

the first things to note in each figure is the system is unstable

j(indicated by the dashed line).
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The instability is caused by the nonoscillatory height mode and was the

case for both thrust laws representing a rocket. This behavior is

consistent with the previous studies and follows as a result of the way

the sum of the longitudinal forces change with respect to altitude

(13:472; 7:283). Interestingly enough the height mode would generally

stabilize at some point for starting altitudes between about 360,000 ft

and 530,000 ft and would occur associated with a limit point.

Frustratingly this is about the point where the mode normally thought of

as the phugoid mode (based on the longer period) would go unstable.

From the stand point of nonlinear analysis not much of interest is

occ-urring for the body flap sweeps with starting alt-ttides less than about

360,000 ft. Specifically, the system is unstable with generally no limit

points from which jump phenomena may occur and no simple bifurcations.

Only if the continuation of a equilibrium branch associated with

increasing altitude is allowed to go long enough, to where the aerodynamic

pitch damping is lost due to the very low density at very high altitudes,

will a Hopf point be found. For the body flap sweep from 300,000 ft

(Figure 10) the Hopf point occurs at 6= +- 57.90 , and an altitude of

615,120 ft for the branch associated with a negative body flap deflection

and 614,970 ft for the other branch; this symmetric behavior is not as

closely followed at lower starting altitudes where the thrust levels and

densities are greater.

Concentrating now on the unstable periodic branches found from the

body flap sweep from 300,000 ft one can see from the bifurcation diagrams

in Figure 10 that as the unstable periodic branch progresses the amplitude

of the limit cycles become fairly substantial, however the period is on

the order of 5000 seconds and since the periodic branch is unstable
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trajectories would not approach it. Recall that the limit cycles of a

periodic branch, indicated by circles, show the maximum and/or minimum

amplitude of the tjic motion. The stability of the periodic branches

is interesting in that it is just barely unstable with a conjugate pair of

Floquet multipliers just outside the unit circle. The height mode at the

point where the phugoid mode goes unstable is very near the imaginary axis

with a time constant on the order of 105 seconds; this is consistent with

previous studies (4:786).

Figure 11 shows the time history over one period for the right
periodic branch with = 56.73 ° and 6bf= 42.250. Figure 12 shows the

time history over one period for the left periodic branch with 6b; = -56.60

and 6,; = -41.80. Note that near the Hopf point on either branch the

motion is slight (ie just leaving equilibrium) but as the parameter is

changed to move along the periodic branch the motion increases. Once

again the behavior of the periodic branches shown in this body flap sweep

(from 300,000 ft) is characteristic of the behavior of the periodic

branches occurring from body flap sweeps starting at "lower" altitudes

that subsequently extend to altitudes above 500,000 ft where pitch

stability is lost.

In order to provide a complete look at the periodic behavior of the

limit cycles, as well as provide a connection with more classic

longitudinal analysis, the limit cycles are projected into the phase plane

with the flight pdth angle. Figure 13 shows two limit cycles from the
right periodic branch; one for 6bf 56.70 and one for 6b= 42.250.

Figure 14 shows two limit cycles from the left periodic branch; one at

6.; = -56.640 and one for 6b! = -41.80. In looking at these figures one

sees clearly that motion is associated with the periodic branches.
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Also, the behavior of the translational states is very much like the

classic phugoid mode, i.e. showing a steady exchange of potential and

kinetic energy. While the periodic branches are unstable, the growth of

the nonlinear behavior in velocity and altitude remains sinusoidal.In

terms of the rotational states, one sees somewhat more complex behavior

which should be expected since the periodic branches arose from the loss

of pitch stability at the very high altitude.

The most interesting body flap sweep for the constant thrust rocket

case resulted from the starting altitude of 400,000 ft. The body flap

sweep bifurcation diagrams and expanded views for a and altitude are shown

in Figures 15, 16 and 17. The behavior of the limit cycles of the

periodic solution branches are certainly visually interesting. Note the

periodic branches contain several limit points which explains their

complex twisting about.

The Hopf bifurcation occurred at 6b= +- 8.930 and generally

speaking is not of great significance since the equilibrium branch was

unstable to begin with and the periodic branch starts out unstable and

encircles an unstable equilibrium branch. On closer inspection of the

periodic branches one will see (Figures 16 and 17) that there is a portion

of both periodic branches, starting at 6bf = +/- 7.820 and continuing to

6bf = +- 6.050, that gains stability by the crossing of a conjugate pair

of Floquet multipliers. This type of stability exchange is associated

with bifurcation to a torus. What this implies is that trajectories

within the domain of attraction of the periodic branch will be drawn into

periodic motion with two frequencies; one describing the "omponent of the

motion in the circumference direction of the torus and one around the

cross section of the torus. The path of the trajectory can be visualized
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as spiralling around the inside of an inner tube (i.e. torus) in

hyperspace (12:263,264).

The accuracy of the solution is very good with the Floquet

multiplier that is supposed to be equal to one (z=l), precisely equal to

one. The fact that stability is gained then lost so quickly indicates

that one or more Floquet multiplier(s) is(are) very near the edge of the

unit circle and upon inspection of the output from AUTO one finds this to

be the case with one pair inside the unit with modulus = 0.99884 and a

second pair with modulus = 0.98. This would indicate a weakly attracting

limit cycle for the range of 8bf where the periodic branches are stable.
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Figure 18 shows the motion of the limit cycle over one period for

periodic branch 1 (left branch) for a point in the stable region at

6bf = -6.830 and a point near the end of the calculated portion of this

periodic branch at 6bf = -2.89 °. Figure 19 shows the motion of the same
two limit cycles (6bf = -6.83 and = -2.890) over one period in the

phase plane with the flight path angle. Figure 20 shows the motion of the

limit cycle over one period for periodic branch 2 (right branch) with

6bf = 8.730 in the stable region and for 6bf = 3.570 near the end of the

calculated branch. Figure 21 shows the limit cycles at 6bf = 8.730 and

6bf = 3.570 in the phase plane with flight path angle. Observing the

behavior of the limit cycle over one period at several points like this

shows why the nonlinear behavior associated with period solutions are so

interesting. Looking at Figures 18 and 20 one can see a kind of wave

changing in amplitude as the parameter is varied. Figure 22 shows

qualitatively the growth of the nonlinear behavior in a as periodic

branch 2 grows. It is this type of behavior, for systems with three or

more degrees of freedom, that leads to more fascinating subjects like

chaos and the Hopf point is as Seydel puts it, "the door which opens from

the small room of equilibria to the large hall of periodic solutions

(12:61)."

On a somewhat different note, the altitude where the Hopf point

occurs on both branches is just about 450,000 ft. This is in the altitude

range where Etkin determined, and later others modified, that the period

of phugoid and pitching modes came very close to each other (4:787-788;

15:17-20). The general conclusion of these earlier works is that there

would be significant coupling of the two modes at this so called

"resonance altitude" (15;7).
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Figure 22. Growth of Nonlinear Waveform, Periodic Branch 2,
aBifurcation Diagram, Body Flap Sweep from 400 kft

In looking at the limit cycles in the preceding figures there does

not seem to be the strong coupling predicted. Some coupled motion is

evident in that the rotational states ((x, 0, and q) go through sub-

oscillations in each overall period while the translational states

maintain a sinusoidal motion with a very regular period. Since the period

is nearly that of the circular orbit for the same geocentric radius, it

would seem that what is observed is a barely unstable elliptical orbit

with the vehicle pitching about its y-axis at some cub-frequency greater

than the frequency of the orbit (i.e. overall frequency of the limit cycle

for the given parameter).

As a final note, notice the limit points on the equilibrium branch

where the equilibrium solution path changes direction.
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It is interesting in that it exists and is associated with the height mode

stabilizing. Notice how the direction of the body flap deflection changes

in order to maintain the original direction of the equilibrium solution

path.

Air-breathing Engine Case. The procedure for continuation and

subsequent analysis for the air-breathing case with the body flap as the

parameter, was the same as that for the constant thrust rocket analysis.

The results are somewhat more interesting in that the height mode is

generally stable for the air-breathing case below approximately

380,000 ft thus the entire system is stable at these "lower" altitudes.

A phenomenon of little physical significance, but interesting

nonetheless for the air-breathing case with body flap sweeps starting from

equilibrium points between approximately 100,000 ft up to approximately

360,000 ft is that the velocity goes very nearly to zero for the portion

of the body flap sweep that has a negative body flap deflection. Before

the velocity actually gets to zero, a Hopf bifurcation occurs, then a

simple bifurcation which has two solution branches. Of the two branches

one stable and back-track the original equilibrium solution branch for all

the states, and the other is unstable. The unstable branching solution

back-tracks a, and altitude, but takes the negative of it's original value

for velocity and pitch rate. Figure 23 shows this bifurcation diagram for

the equilibrium branches only. Further work is needed to finish exploring

this behavior. Notice that in Figure 23 the + - symbol indicates the

stable branching solution and the x - symbol indicates the unstable
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branching solution. Finally the original branch also turns back on itself

after going to nearly zero subsequent to the Hopf point; this back-

tracking original branch turns back as an unstable branch but regains

stability as it repasses the Hopf point (as expected).
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Figure 23. Bifurcation Diagram for Body Flap Sweep from 100 kft
Air-Breathing Engine

For ease of discussion, Figure 24 shows all of the positive body flap

sweep from 100,000 ft, but only the stable portion of the negative body

flap sweep from 100,000 ft for the air-breathing engine case. This

diagram contains the Hopf bifurcation but none of the "back-tracking"

solutions. A big difference from the previous case is readily apparent,

the system is stable up to the Hopf point at which time the phugoid mode

loses stability and note how low the altitude is ( approximately 73,000

ft). Notice this is a subcritical bifurcation (12:72); that is an

unstable periodic branch encircles a stable equilibrium branch. What this
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implies is trajectories near the periodic solution branch but within the

domain of attraction of the equilibrium branch will be drawn to the

stable equilibrium branch and generally no further changes of the states

will occur.
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Figure 24. Partial Body Flap Sweep from 100 kft for the Air-Breathing
engine case

Figure 25 shows the limit cycles over one period for a point near

the Hopf bifurcation (6bf = -52.770 ; T = 77 sec) and the point on the end

of the calculated periodic branch (6bf = -23.540 ; T = 140 sec). Clearly

visible is the increase in nonlinear behavior as one moves along the

periodic branch. Near the Hopf point one can see the motion is nearly

constant and what little variation is there is sinusoidal. For points
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Figure 25. Limit Cycles for 6bf= -52.770 & 6bf = -20.54, Body Flap
Sweep from 100 kft : Air-Breathing Engine

farther along the periodic branch the nonlinear behavior, due to the

underlying nonlinear equations, truly begins to blossom.

Figure 26 shows the limit cycles for 6bf = -52.770 and -23.540 ini the

phase plane. Once again the classic phugoid-like behavior of the

translational states is seen. Note as before in the constant thrust case

the rotational states have this sub-oscillation. In contrast to what was

seen in the constant thrust rocket case, here the phugoid mode has gone

unstable at relatively low altitude (approximately 73,000 ft).

A body flap sweep from 400,000 ft for the air-breathing engine case

is shown in Figure 27. The general characteristics for this sweep are the

same as for the constant thrust rocket. However here the periodic branch

remains unstable. As with the constart thrust rocket case, each

equilibrium branch has a limit point where the height mode stabilizes.
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Figure 26. Limit Cycles in Phase Plane (6bf = -52.770 & -23.540)
Body Flap Sweep from 100 kft : Air-Breathing Engine

There are also several limit points found along each periodic branch; just

as with the constant thrust rocket body flap sweep from 400,000 ft.

Figures 28 and 29 show the limit cycles over one period and the

limit cycles in the phase plane for the right periodic branch with

6bf = -0.000780 and 0.01180. Figures 30 and 31 show the limit cycles over

one period and the limit cycles in the phase plane for the left periodic

branch with 6bf= -0.00460 and -0.0110. These points are as before, used

to show the behavior of the limit cycle near the Hopf point versus the

behavior farther down the periodic branch. The same basic behavior is

seen for the translational states as discussed for pre,;ious cases.

However of interest is the phase shift occurring along the left periodic

branch. It is interesting to see how the 3-ft branch differs markedly

from the right branch even though the two look relatively symmetric.
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Throttle Parameter (T) Variation

The throttle parameter acts as a multiplier to scale the equilibrium

value of thrust. In the case of the constant thrust rocket it scales the

value of the thrust at the starting altitude which was set equal to the

drag. For the air-breathing engine case the throttle parameter scales the

thrust as with the rocket case (i.e. which was set equal to drag at the

starting altitude), however for the air-breathing case the thrust varies

as a function of altitude via T = To [p(r)/po]. A change in thrust causes

a corresponding change in drag to maintain equilibrium so once again the

velocity and radius begin to play an important role. However an

interesting characteristic of the equilibrium solution paths where the

throttle is the parameter is the lack of any modulation in the coefficient

of lift or drag; which remain effectively constant at all throttle

settings and radii.

The analysis using the throttle as a parameter was done in the very

same manner as the body flap parameter. As before a starting altitude was

selected (with a = 0 = 0 radians) from which the equilibrium values for

the remaining states were calculated. From this point the throttle

parameter was first increased from 6T=1.0 then decreased. This yielded

a complete throttle sweep.

Constant Thrust Rocket Case. Not much happened with this case. From

Figures 32 and 33 one can see the system is unstable, due to the height

mode, and is nonlinear but no bifurcations were detected. It appears

without the pitching associated with the body flap there is little to

drive the nonlinear nature of the problem. In contrast to the cases where
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the body flap was used as the parameter the angle of attack in these

cases is basically zero.
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Figure 32. Collection of Bifurcation Diagrams for Throttle Sweep from
100 kft Constant Thrust Rocket
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Air-Breathing Engine Case. For the air-breathing case the most

interesting behavior was at altitudes below 400,000 ft. The following

discussion characterizes the general nature of what was found at these

"lower" altitudes. Figure 34 shows the 6T sweep for the air-breathing

engine from 100,000 ft. For the portion of the sweep where 6T < 1.0 the

system remains stable. For the portion of the sweep where 5T > 1.0 the

system loses stability subcritically at a limit point (6T = 18.99 ) where

the height mode crosses the imaginary axis. Just after this occurs (T =

18.93) a Hopf Bifurcation point is found. Since the limit point preceded

the Hopf point this bifurcation is not classified either supercritical or

subcritical and as before is really of little physical value other than to

perhaps give an idea of the bound on the allowable perturbation to remain

in the vicinity of the equilibrium solution branch.

Figure 35 shows an expanded view of the area around the Hopf point

and Figure 36 shows just the maximum limit cycles from the bifurcation

diagram. These limit cycles show quite a variation of amplitude for the

rotational states along the periodic branch as 6T is increased. Looking

at Figure 37 one sees smooth sinusoidal behavior in the translational

states even though the limit cycles are for points well toward the end of

the calculated portion of the periodic branch (6T= 19.063 and 19.078).

The rotational states however, display some relatively high frequency sub-

oscillations. Although the amplitudes of these sub-oscillations are quite

small and the period is on the order of 150 seconds (see Figure 38). In

examining the phase plane representations of the limit cycles versus the

flight path angle (Figures 39 and 40) one sees the translational states

clearly displaying the motion that can be associated with an elliptical

orbit. Further support of this view is given from Figure 41, where the
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variation in the overall parameter dependent period of the periodic branch

is shown relative to the circular orbital period f or the values of the

states at the given 5T.
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Figure 34. Collection of Bifurcation Diagrams for Throttle Sweep from
100 kft for Air-Breathing Engine Case
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IV. Model Stabilization

Simple Feedback Options

In Stengel's work (13) he presented a summary of several possible

feedback schemes using several controls. Table 1 in section I is a

reproduction of the table found in Stengel's paper. In looking at these

possible schemes one becomes aware of the dichotomy regarding the height

mode and the phugoid mode. Most stabilizing feedback for the height mode

destabilizes the phugoid and vice versa. In Berry's work (2) similar

feedback options were tried for the linear approximation technique and

found to display the same behavior as found by Stengel. This "inverse"

relationship between the height mode and the phugoid mode plus the

restrictions imposed by the simplicity of the vehicle model made it beyond

the scope of this thesis to actually stabilize the height mode. The

success in stabilizing the height mode and not destabilizing the phugoid

lay in developing a control law/technique to properly modify the way the

longitudinal forces vary with height and velocity (as discussed in

sec. on I). Minor suceess was experienced in dealing with the phugoid by

using pitch rate feedback to the body flap. It should be noted that pitch

rate feedback in general has little afl±c- on the phugoid roots however it

was a technique that could be easily managed and did demonstrate the

concept. For a given change in the pitch rate feedback the phugoid mode

could be improved, but so slightly that in a practical sense it was

worthless. Figure 42 shows the basic feedback loop with the pitch rate

relative to the earth fed back in a negative feedback loop to the body

flap (6bf)
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Figure 42. Pitch Rate Feedback Loop for Model Stabilization

Note the parameter now becomes the value input as the command (6bfc).

The new value of 5bf for use in eqn(22), the moment coefficient equation

is given by the following:

: = c - Ka (q- 360 (40)

21r

where: 6bfc = new parameter for body flap sweep control (deg)
Kq = pitch rate feedback gain

Figure 43 is sufficiently representative of all the cases where pitch rate

feedback was used. It must be emphasized that the curve in Figure 41 is

a curve of Hopf bifurcation points. What can be seen is that as the value

of Kq is changed the location of the Hopf point relative to the body flap

deflection is changed. In this case a gain of Kq=20 pushes the Hopf point

down the curve the farthest. However, as one can clearly see the

improvement is extremely small; to the point of being basically
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constant thrust rocket system and attempting to use alternative feedback

of other states, it seems that without recasting the mathematical model to

allow for more reasonable feedback control, say with attitude command

inputs, significant stabilizing routines cannot be obtained.
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Figure 43. Movement of Hopf Bifurcation given Pitch Rate Feedback to
the body flap. Air-Breathing Engine from 100 kft
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V. Conclusions and Recommendations

Conclusions

Overall this study has not produced results that would be considered

"Earth shaking" or significantly different from previous work. It has

however resulted in some worthwhile accomplishments, not the least of

which is demonstrating how easy it is to use bifurcation analysis on

problems related to hypersonic flight. This method provided much the same

information as obtained by other authors using perturbation techniques,

yet gave a much greater view of the actual effects of the nonlinear nature

of the problem.

In terms of comparison to previous work, it was found that the

period and damping of the phugoid and pitching modes was similar to the

behavior discovered by Vihn and Dobrzelecki and verified by Markopoulos,

et al. (15:16-18; 7:286,287). Their study showed that the two modes do

not cross for the linearized model as Etkin had concluded, but instead

come very close together then diverge (4:785,786); this was the case here

as well. From past work the behavior associated with the two modes in the

vicinity of the "resonance altitude" (15;16) are expected to be coupled

and behave nothing like that expected of the classic pitching and phugoid

modes. It was shown here that there is significant departure from the

classic behavior of the rotational states, in that they show significant

motion when the phugoid mode goes unstable. However the translational

states act basically as expected. Looking at the limit cycles of the

periodic branch associated with the "resonance altitude" one sees what
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could be described as a one way coupling from the translational states to

the rotational states, with the rotational states experiencing

sub-oscillating for each period of the translational states. In addition

the loss of stability at high altitude which Etkin concluded would occur

due to the loss of pitch damping and a destabilizing moment due to the

effect of the gravity gradient was seen (4:785,787).

For the body flap bifurcation analysis the most interesting findings

are the results associated with the nonlinear behavior around 400,000 ft

starting altitude. Of note in this analysis is the very marginal

instability or stability that may exist in this region. In all cases the

real part of the eigenvalues are very near the imaginary axis when in this

altitude region. In the case of the constant thrust rocket starting at

400,000 ft, the periodic branch was found to have a region of stability.

This implies that trajectories within a relatively small domain of

attraction would be drawn to the limit cycle therefore the vehicle could

expect to experience stable periodic motion, on the order of the orbital

period, with fairly significant amplitude for velocity and altitude.

Looking at the behavior of the translational states and given that the

period of the limit cycle is nearly equal to that of a circular orbit, it

seems likely that the limit cycles associated with the "resonance

altitude" describe the velocity and altitude of an elliptical orbit.

The bifurcation sweeps using the throttle parameter showed for the

most part that the throttle is a very benign way to control the energy of

the vehicle. Little was found that was of physical interest from the

stand point of examining nonlinear behavior. The most interesting

behavior was found for the air-breathing case with starting altitudes

below 400,000 ft. At these "lower" altitudes the higher atmospheric
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density made the aerodynamic forces more effective and the equilibrium

Uenergy management is done by changing velocity and altitude without

rotating the vehicle. Only one physically realistic Hopf point was found

for these low altitude sweeps. The periodic motion looked similar to that

obtained from the body flap sweeps in terms of the altitude and velocity,

however the rotational states experience a relatively high frequency

J sub-oscillations relative to what was seen before. In further comparing

the results to the bifurcation sweeps using the throttle parameter and the

f body flap parameter for the constant thrust rocket case the pitch angle

and the variation of the lift coefficient play key roles in the dynamics

of the system. It seems without the pitch angle providing the impetus for

j instability the Hopf bifurcation at high altitudes where aerodynamic pitch

damping is lost is not seen, which is not altogether surprising.

Augmenting the vehicle model to obtain system stability for cases

where the height mode is unstable seems to be intractable without changing

the model to allow for commanded attitude input and the ability to

generate or obtain the measurements of states or some value associated

with a state that will allow for the minimization of some error.

Certainly the rich dynamics associated with nonlinear phenomena has

been demonstrated by the resulting complex behavior present even in this

simple example. This work stands in contrast to those in previous studies

who claimed to have explored the nonlinear nature of the longitudinal

dynamics of a powered lifting hypersonic vehicle by simply including

second order terms in the Taylor series expansions for small perturbation

analysis. While no great departures of physical significance were found

in this study from that which was previously obtained by others, this work

does display many of the major findings of previous works and adds insight
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to the expected local behavior of trajectories.

Perhaps most useful of all, is this work displays the tremendous

utility and encompassing nature of bifurcation analysis as well as the

ease with which it can be applied to problems of this sort.

Recommendations

This work really stands as a first step. It opens the door to a

variety of areas for further investigation. Several of these are briefly

mentioned below.

1. Add the lateral equations of motion and study the dynamics of a

powered lifting hypersonic vehicle flying a minor circle. This would

provide significant coupling of the longitudinal and lateral dynamics and

should make for some interesting behavior.

2. Define the aerodynamic forces and moment coefficients in nonlinear

terms as found in references such as Etkin's text (5:199,393).

3. Include the rotation of the Earth in the equations of motion.

4. Increase the accuracy of the thrust laws to reflect more up-to-date

propulsion concepts such as ramjets and scramjets. This would bring Mach

number and additional altitude dependencies.

5. Develop higher order control systems to stabilize the height mode

without destabilizing the phugoid mode. This will require the addition of

states to the model to allow for commanded attitudes and feedback to

controls with direct influence over altitude and velocity. Recall for

this study the simple feedback of available states to the body flap proved

worthless for stabilizing the height mode and of little value in

maintaining phugoid stability much beyond an original Hopf point.
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Appendix A: FORTRAN Listing of the User Supplied Subroutines for AUTO

C CURRENT AS OF 23 Nov 1990
C ----------------------------------------------------------------------
C-----------------------------------------------------------------------
C-----------------------------------------------------------------------
C-----------------------------------------------------------------------

----------------
SUBROUTINE FUNC(NDIMU,ICP,PAR,IJAC,F,DFDU,DFDP)

C
C This subroutine evaluates stationary solutions from the equations of
C motion for a powered lifting aerospace vehicle flying along a great
C circle about a nonrotating spherical Earth.
C Input parameters:IC NDIM - Dimension of U and F.
C U - State Vector containiing U.

CU(1)- V/VO the velocity along the flight path divided
C by a constant (nondimensional)
CU(2)- alpha Angle of Attack (radians]

CU(3)- q Pitch Rate of the Body relative
C to the Earth (rad/sec]
C U(4)- theta Pitch Angle (radians]
C U(5)- r/RO Radius from Earth's Center divided by a
C constant (nondimensional)
C PAR - Array of parameters in the differential equations.
C PAR(1) =df Body Flap deflection [degrees]
C ICP - PAR(ICP(1)) is the initial 'free, parameter.
C IJAC - -1 if the Jacobians DFDU and DFDP are to be returned,
C -0 if only F(U,PAR) is to be returned in this call.
C
C Values to be returnedIC F - F(U,PAR) the right hand side of the ODE.
C DFDU - The derivative (Jacobian) with respect to U.
C
C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DOUBLE PRECISION L,KO,Ky,mslug,Lift

C
DIMENSION U(NDIM),PAR(20)
DIMENSION F(NDIM),DFDU(NDIM,NDIM),DFDP(NDIM,20)
COMMON /CNST/ alt,L,Ky,KO, re,R0,VO,gs,IRSTST,ITEST
COMMON /FUNVL/ rho,g,Cd,Cl,CM,TPM,DRODU5,DGDU5,S,mslug
COMMON /AERO/ CdO,Cda,ClO,Cla,CMO,CMa,CMdf,Cmq
COMMON /CFORC/ orbper,Drag,Lift,altw,W,Fc,Tx,Ty

C
C .......Set flag for Subroutine Const to use current values
C ....... of the States rather than initial values.
C

ITEST-0
C
C ....... Call Subroutine CONST to obtain the States, plus the
C ....... necessary constants and functional values
C

CALL CONST(U)
C

C************** System of 5 Nonlinear Equations of Motion ********

C
C ....... dv/dt SCALED ie U(1)- V/V0 (Note U~i) is nondimensional)
C ....... NOTE: TPM - T/m
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C
F(1)=( (TPM)*DCOS(U(2)) - (O.5D0*rho*S*Cd*(VO*U(1))**2)/mslug
& .-g*(DSIN(U(4))*DC0S(U(2))-DCOS(U(4))*DSIN(U(2))) )/VO

C
C .......d(alpha)/dt
C

F(2)=u(3)+( g/(U(1)*VO) )*(DCOS(U(4))*DCOS(U(2J)+DSIN(U(4))
& *DSIN(U(2)))..(TPM/(U(1)*VO))*DSIN(U(2)1-
& (O.5D0*rho*S*Cl*U(l)*VO/mslug)

C
C .......dq/dt
C

F(3)-( (O.5D0*rho*S*L*CM*(U(1)*VO)**2) / (mslug*Ky**2)
& -( (1.SDO)*( g/(U(5)*RO) )*(KO)*DSIN(2.ODO*U(4)))

C
C ....... d(theta)/dt
C

F(4)=U(3)+( ( (U(1)*VO)/(U(5)*RO) )*( DCOS(U(4))*DCOS(U(2))+
&DSIN(U(4))*DSIN(U(2))

C
C ....... dr/dt
C

F(5)=((U(1)*VO)/RO)*(DSIN(U(4))*DCOS(U(2))-
& DCOS(U(4) )*DSIN(U(2)))

C
IF( IJAC.EQ. 0)RETURN

C
C

RETURN
END

C
SUBROUTINE STPNT(NDIM,U,PAR)

C - - - - - - -
C
C ....... In this subroutine the steady state starting point must be defined.
C ....... (Used when not restarting from a previously computed solution).
C ....... The problem parameters (PAR) may be initialized here or else in INIT.
C
C NDIM - Dimension of the system of equations.
C U - Vector of dimension NUIM.
C Upon return U should contain a steady state solution
C corresponding to the values assigned to PAR.
C PAR - Array of parameters in the differential equations.
C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DOUBLE PRECISION L,KO,Ky,mslug

C
DIMENSION U(NDIM),PAR(20)
COMMON /CNST/ alt,L,Ky,KO, re,RO,VO,gs,IRSTST,ITEST
COMMON /FUNVL/ rho,g,Cd,Cl,CM,TPM,DRODU5,DGDU5,S,mslug
COMMON /AERO/ CdO,Cda,ClO,Cla,CMO,CMa,CMdf,CMq

C
C ....... Initialize the problem parameters.
C

PAR(1-O.ODO
write(*,*) 'Enter initial par(2)-Kq and par(3)-W/S

& par(4)- Trho, and par(S)uthrottlet
read(*,5)PAR(2)
read( *,5)PAR(3)
read( *,5)PAR( 4)
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U(2)=O.ODO
-U(4k0O.ODO
ITEST=1O
CALL CONST(U)

C
RETURN
END

C
SUBROUTINE INIT

C-- - - - - - -
C
C ........In this subroutine the user should set those constants that require
C ........values that differ from the default values assigned in DFINIT.
C ........(See the main documentation for the default assignments).
C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C

COMMON /BLBCN/ NDIM,IPS,IRS,ILP,ICP(20),PAR(20)
COMMON /BLCDE/ NTST,NCOL,IAD,ISP,ISW,IPLT,NBC,NINT
COMMON /BLDLS/ DS,DSMIN,DSMAX,IADS
COMMON /BLLIM/ NMX,NUZR,RLORL1,AO,A1
COMMON /BLMAX/ NPR,MXBF,IID,ITMX,ITNW,NWTN,JAC

C

C** ~ ********READ AUTO PARAMETERS ************

C
OPEN(UNIT=27,FILE'DS.)AT' ,STATUS='OLD')
REWIND (27)

C ........ITEMS IN COMMON BLBjCN - BASIC CONSTANTS
READ(27,*) NDIM
READ(27,*) IPS
READ(27,*) IRS
READ(27,*) ILP
READ(27,*) ICP(l)
write(*,*) 'Which parameter to vary?(PAR(2)-Kq PAR(3)-W/S

& PAR(4)-Trho, PAR(S)-Throttle setting)'
read(*,5) I

5 format(I1)
ICP(2)-I

C ........ITEMS IN COMMON BLCDE -DISCRETIZATION CONSTANTS
READ(27,*) NTST
READ(27,*) NCOL
READ(27,*) IAD
READ(27,*) ISP
READ(27,*) ISW
READ(27,*) IPLT

C ........ITEMS IN COMMON BLDLS -STEPSIZE ALONG SOLN BRANCHES
READ(27,*) DS
READ(27,*) DSMIN
READ(27,*) DSMAX
READ(27,*) lADS

C ........ITEMS IN COMMON BLLIM -LIMITS

READ(27,*) NMX
READ(27,*) NUZR
READ(27,*) RLO
READ(27.*) RLI
READ(27,*) AO
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READ(27,*) Al
C ....... ITEMS IN COMMON BLM4AX M AXIMA

READ(27,*) NPR
READ(27,*) MXBF
READ(27,*) IID
READ(27,*) ITMX
READ(27,*) ITNW
READ(27,*) NWTN
READ(27,*) JAC
CLOSE (27)

C
RETURN
END

C
FUNCTION USZR( I,NUZR, PAR)

C-- - - - - -
C
C ....... This subroutine can be used to obtain plotting and restart data
C ....... at certain values of free parameters.
C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DOUBLE PRECISION L,Ky,KO,mslug

C
DIMENSION U(5),PAR(20)
COMMON /CNST/ alt,L,Ky,K0,re,RO,V0,gs,IRSTST, ITEST
COMMON /FNVL/ rho,g,Cd,Cl,CM,TPM,DRODU5,DGDU5,S,mslug

C
C ....... Initially, for the steady state analysis, set NUZR-0 in INIT.
C ....... Then the functions specified below will be ignored.
C
C ....... When computing the branch of periodic solutions, set NUZR-4 in INIT.
C ....... Output will then be written in unit 8 for the values
C ....... of PAR(*) specified below.
C ....... Note that PAR(1l) is normally reserved. It is used by AUTO to keep
C ....... track of the period (See main documentation).
C

GOTO(l,2,3,4)I
C
1 USZR=PAR(ll) - 10.0

RETURN
C
2 USZR-PAR(ll) - 14.0

RETURN
C
3 USZR=PAR(ll) - 20.0

RETURN
C
4 USZR-.PAR(11) - 30.0

RETURN
C

END
C

SUBROUTINE CONST(U)
C-- - - - - - - -
C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DOUBLE PRECISION L,KO,Ky,Lift,mdot~mtmslug

C
DIMENSION U(NDIM)
COMMON /BLBCN/ NDIM,IPS,IRS,ILP,ICP(20),PAR(20)
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COMMON /CNST/ alt,L,Ky,K0,re,RO,VO,gs,IRSTST,ITEST
COMMON /FUNVL/ rho,g,Cd,Cl,CM,TPM,DRODU5,DGDU5,S,mslug
COMMON /AERO/ CdO,Cda,ClOCla,CMO,CMa,CMdf,CMq
COMMON /CFORC/ orbper,Drag, Lift, altw,W, Fc,Tx,Ty

C

C******* Aerodynamic and Geometric Constants

CdO=0.013 300
Cda'=0.4D0
Cl0=0.05D0
Cla=0.5D0
CM0=0. 000
CMa=-0. 054800
CMdf=CMa*l. 500
CMq=-0.028D0

C ....... Characteristic Length of Vehicle -overall length L-50 ft
C

L=50.ODO
C .......Weight, Mass and Area of Vehicle
C

Wsl=700. 003
S-Wsl/PAR( 3)
mslug-Wsl/32 .17400

C
C ....... Radius of gyration in pitch [ft] -Ky'2 -Iy/m

C
Ky=25 .000

C
C ....... KO=(Ix-Iz)/Iy
C

KO=-0 .9400
C
C ....... Radius of the Earth [ft] (standard geoid)
C

re-2 .090326446807
C
C .......Gravity at Earth's surface [ft/sec^2]
C

gs=32.174D0
C

VO-1000.000
RO=1000. 000
raddeg-2 .000*3.1415926535900/360.000

C

C *******READ ALTITUDE AND SET INITIAL U(S) *****~**

C
IF(ITEST .GT. 5) THEN

OPEN(UNIT-25,FILE'IALT.25' ,STATUS&'OLD')
REWIND (25)
READ(25,*) alt

C ....... SET INITIAL VALUE FOR THE RADIUS U(S). NOTE: SCALED DOWN BY RO
C

U( 5)-( re+alt)/RO
C

END IF
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C

C************** Density and Gravity variation with altitude

C
IF( (U(5)*RO - re) .LT. 6.0D5 ) THEN

C
C ....... Convert altitude to SI units [kin]
C

altsi=( ( U(5)*RO - re )/3.2808399D0 ) 1000.ODO
C
C ....... Calculate the density in SI units [Kg/m'3]
C ....... Constants used in polynomial (U.S. Standard Atmosphere Supp. 1966)
C

CO=0. 1000000000D+01
Cl=0.3393495800D-1
C2=-0. 3433553057D-2
C3=0. 5497466428D-3
C4=-0.3228358326D-4
C5=0.1106617734D-5
C6=-0 .2291755793D-7
C7=0. 29021464 43D-9
C8=-0. 2230070938D-ll
C9=0 .1010575266D-13
C10=-0 .2482089627D-16
Cll=0.2548769715D-19

C
eqnl=C0+(Cl*altsi )+(C2*altsi**2)+(C3*altrsi**3)+(C4*altsi**4)+

&(C5*altsi**5)+(C6*altsi**6)+(C7*altsi**7)+(C8*altsi**8)+
&(C9*altsi**9)+(ClO*altsi**l0)+(Cll*altsi**11)

C
rhoSI=l .2250D0/eqnl**4

C
C ....... Convert from Kg/m^3 to Lbm/Ft^3
C ....... (0.062427961 (lbm/ft^3)/(Kg/m^3)
C

rho~rhoSI*0. 062427961D0
C
C ....... Convert to [Slugs/ft^3]
C

rho-rho/32 .174D0
C

ELSE
C
C ....... Equation for rho if altitude is greater than 600,000 ft
C

rho- 2.16671253724D-10*
& DEXP(-8.89837671693D-6 * (U(5)*RO - re)

END IF
C
C ....... Calculate the gravitational acceleration

C g- gs *Cre / (U(5)*RO) )**2
C
C.......Calculate the Atmospheric Pressure

p- 2ll6 . 22D0
p1--5. 8507 46831820396D-05
p2=9.792179784448163D-01

* p3=9.875326461241002D-05
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* p4=-6.044333173347913D-06
* p5=3. 408653276857509D-09
* p6=-8 .934489792l46698D-07
* alt=(U(5)*RO - re)
* Pa=pO*DEXP(pl*alt**p2 )+p3*DEXP(p4*alt)+p5*DEXP(p6*alt)

C

C**** Thrust Equations and Aerodynamic Coefficients **********

C
Cd=CdO+Cda*U( 2) **2
Cl=ClO+Cla*U( 2)

C
C ....... Exhaust Nozzle Area [ft^2]

* An=40.ODO
C
C ........Exhaust velocity (Vexh) =500 ft/sec
C

*.........Vexh=500.ODO

C .... Rocket with constant Thrust at reference altitude and velocity.
C ....... Note: W/S=30 [lb/ft'2] at sea level, therefore
C ....... U(1initial - sqrt( (g r) / (1 + (rho r Cl S)/2m)) is
C

IF (ITEST .gt. 5) THEN
C

UMl)2 DSQRT( (g*U(5)*RO)/( 1.ODO+(rho*S*U(5)*RO*Cl)/
C (2.ODO*mslug)

U7(3) = -U(l)/(U(5)*R0)
C
C ....... Thrust Constant
C

TO=( 0.5D0*rho*S*Cd*U(l)**2 )/(rho**PAR(4))
write(*,*) 'TO=',TO

C
C ....... Mass flow rate in (slugs/sec]
C
C .......Assume the Pressure is expanded to the starting altitude value

* Pe-Pa
* mdot-( (0.5D0*rho*(U(1)**2)*Cd*S) - (Pe-Pa)*An )/Vexh

* write(*,*) 'MDOT=',mdot
C
C ....... SCALE DOWN 13(1) and nondimensionalize
C

U(l)=U(1)/V0
C
C ....... PRINT RESTART DATA FILE

OPEN(27,FILE-'REF.DAT' ,STATUS-'NEW')
WRITE(27,10) alt,TO

10 FORMAT(40x,'REFERENCE VALUES',/,6X,'ALT (FT]',
& 14X,'TO [ft^4/sec^2]',/,2(1X,El5.8,4X))

CLOSE( 27)
OPEN( 40,FILE-'THRUST.DAT' ,STATUS='NEW')
OPEN(41,FILE-'COEFF.DAT' ,STATUS-'NEW')
WRITE(40,21)
WRITE(41,22)
IRSTST-10
try=0.OdO

ELSEIF (IRSTST .LT. 5) THEN
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OPEN(27,FILE='REF.DAT' ,STATUS-'OLD')
REWIND(27)
READ(27,20) xjnkl,TO
OPEN(40,FILE='THRUST.DAT',STATUS='NEW')
OPEN(41,FILE='COEFF.DAT',STATUS-'NEW')
WRITE(40,21)
WRITE( 41,22)

20 FORMAT(/,/,2(lX,E15.8,4X))
21 FORMAT(6X,'H',15X,'Tx',l5x,'D',15x,'Ty',15x,'L',15X,'W',

& 15x,'Fc',14x,'Orb Per')
22 FORIAT(8X,'H',15x,'Cl',15x,'Cd',15x,'CM',15x,'V',15x,

& 'alpha',15x,'Rad')
IRSTST=l 0

END IF
C

Thrust =(TO*rho**PAR(4)) * PAR(5)
orbper= (6.2831853072D0 * U(S)*RO)/DSQRT(g*U(S)*RO)
Drag= 0.500*rho*S*Cd*(U(1)*VO)**2
Lift= 0.5D0*rho*S*Cl*(U(l)*VO)**2
altw= U(5)*RO -re

W =mslug~g
Fc =mslug*( ((U(1)*V0)**2 )/(U(5)*RO)
Tx=Thrust*DCOS(U(2))
Ty=Thrust*DSIN(U(2))
TPM=Thrust/mslug
if (try .1t. 1.OdO) write(*,*) 'TPM=',TPM
try=5. OdO

C
C ....... PAR(1 - body flap deflection
C ....... qO - Pitch rate due to spherical Earth in body axis system
C ........ Note all angles are in radians EXCEPT the body flap deflection
c .......( df=PAR(l) ) which is in degrees, therefore PAR(l) is multiplied
C .......by 2*pi/360 trad/deg]
C

qO - -(UM1 * VO)/(U(S) * RO)
* UO - DSQRT( g*U(5)*RO/((rho*U(5)*RO*Cl/2.ODO*MSlUg)+l.ODQ))

df - PAR(l) - PAR(2)*(U(3)-q0)
CM - CM0+CMa*U(2)+CMq*(U(3)-qO)+CMdf*raddeg*df

C
RETURN
END
subroutine BCND
return
end
subroutine ICND
return
end
subroutine FOPT
return
end
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Appendix B: Standard Atmospheric Approximations for Density and Pressure

The value of density for the Standard Atmosphere (14) is calculated using

a different equation over two altitude regions. The Lirst altitude range

is from 0 to 600,000 ft. The density-altitude approximation for this

range was obtained directly from the work by Vihn and Dobrzelecki (15:25)

I and provides values of density accurate to within 5% of the Standard

I Atmosphere tor altitudes ranging from 0 to 200 Km (0 to 656,000 ft)

(15:25). This equation is an inverse polynomial relationship given by:

P = Psi (41)[Ao + +%Z .. + A,1Z11I

I
where: p = density [kg m 3]

Psi = sea level density [kg m 3]
Z = altitude above standard geoid (6371.315 km)

(note this is the average radius of the Earth at the
equator, which is different for reference 15)

Aj = Coefficients (j=1-11) [km "]j

Table 2

ICoefficients for Density Polynomial

I A.

0 0.1000000000 E 01
1 0.3383495800 E-01
2 -0.3433553057 E-02
3 0.5497466428 E-03
4 -0.3228258326 E-04
5 0.1106607734 E-05
6 -0.2291755793 E-07
7 0.2902146443 E-09
8 -0.2230070938 E-10
9 0.1010575266 E-13
10 -0.2482089627 E-16
11 0.2548769715 E-19 (15:26)
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Note the density is computed in [kg m-3] and is then converted to [slugs

t-3] using 1.9403232735 E-03 [(kg m-3)/(slugs ft-3)].

For altitudes above 600,000 ft the following exponential relation is used:

p = 2.16871253724E-l0 exp(-8.89837671693E-06 Z) (42)

where: p = density [slugs ft "31

Z = altitude [ft]

Note this equation yields the value of o in [slugs ft-3]

Figure 44 shows the calculated density relative to the Standard

Atmospheric data from reference 14.

For the pressure altitude relation an exponential relationship was

developed using the nonlinear fitting routine on MATLAB from MathWorks.

P= POExp(PIZ P2 ) + P3Exp(P4Z) + P5Exp(P6Z) (43)

where: P = atmospheric pressure [lb ft-2

PO 2116.22 [lb ft-2]
P1 = -5.850746831820396 E-05
P2 = 9.792179784448163 E-01
P3 = 9.875326461241002 E-05 [lb ft2]
P4 = -6.044333173347913 E-06
P5 = 3.408653276857509 E-09 Ilb ft"2]
P6 -8.934489792146698 E-07
Z = equatorial altitude above the Standard geode [ft]

Figure 45 shows the quality of the pressure fit to the Standard
Atmospheric data in reference 14.
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